#224
Сообщение
poty » 07 окт 2017, 01:14
Если вкратце - это метод тюнинга SRPP, предназначенный для сопряжения каскада с нагрузкой.
Чтобы ответить профессионально надо идти в ветку расчётов каскадов и выводить соответствующую формулу, но мы же здесь занимаемся не этим, поэтому я попытаюсь объяснить "на пальцах".
Давайте сделаем несколько допущений:
1. Имеем идеальный источник тока M1(R1+R6), который старательно поддерживает ток на своих выводах в зависимости от напряжения затвор-исток.
2. Имеем лампу, представляющую собой источник напряжения с регулируемой амплитудой (ИНР) и последовательный резистор ra.
Для начала подключим нагрузку (левый вывод C1) к аноду лампы. Сверху имеем постоянный ток, "вливающийся" в анод лампы. В устоявшемся режиме ток через нагрузку не течёт (из-за С1). Если напряжение ИНР изменяется, то через нагрузку начинает идти некий ток (увеличение напряжения ИНР приводит к протеканию тока в положительном направлении, уменьшение - в отрицательном; направления я выбрал условно). Величина этого тока определяется из напряжения ИНР и резистивного делителя ra - R4. Никакое изменение напряжение ИНР не способно изменить ток через источник тока М1 (он идеальный, напомню), а так как ток не меняется, то напряжение затвор-исток также не меняется (это напряжение определяется падением напряжения на R1+R6 из-за протекания через них тока). Имеем мю-фолловер в чистом виде. Изменение нагрузки изменяет соотношение плеч делителя ra - R4 и выходное напряжение. Имеем ограничение - если лампа полностью закроется источнику тока некуда будет "сливать" ток и он перестанет работать - получим отсечку и искажения.
Теперь переключим нагрузку на верхний вывод R1. Такое маленькое изменение резко меняет ситуацию. Изменение напряжения ИНР будет снова вызывать ток в нагрузке, но теперь он будет протекать через R1+R6 (они как бы станут частью бывшего плеча делителя - ra). Это изменение вызовет изменение напряжение между затвором и истоком, что вызовет противоположную по знаку реакцию M1: увеличение напряжения ИНР приведёт к уменьшению тока через M1, уменьшение ИНР - к его увеличению. Т.е., ток через нагрузку будет определяться уже суммой от воздействия U1 и M1 (т.е., будет увеличен). Имеем классический SRPP. Изменение нагрузки будет влиять сразу на два компонента: делитель ra - R4 и ток, утекающий в источник тока. Ограничений оказывается также два: либо закроется лампа и источнику тока придётся перестать работать (у него не будет напряжения, за счёт которого инициируется ток), либо напряжение на R1+R6 станет таким, что закроется M1 и тогда уже лампе невозможно будет работать. Если рассмотреть этот вопрос повнимательнее, то, с учётом всех параметров реагирования этих двух активных элементов, существует единственное значение сопротивления нагрузки, при котором рассмотренные ограничения наступают симметрично относительно состояния покоя. Что же происходит, если сопротивление оказывается ниже этой "золотой точки"? В этом случае ток через R1+R6 становится настолько большим, что M1 закрывается раньше (в своей полярности синусоиды, естественно), чем U1. Имеем ограничение выходной амплитуды сигнала с отрицательной стороны. Если сопротивление оказывается выше "золотой точки", то (согласно делителю ra - R4) напряжение на аноде U1 достигнет нуля раньше, чем в соответствующей полярности закроется М1 - имеем ограничение выходной амплитуды со стороны положительной полярности. Фактически, если сопротивление нагрузки равно бесконечности, то ток через R1+R6 не протекает (речь о переменном токе) и SRPP превращается в мю-фолловер: никакой сигнал не влияет на ток через M1. Для одинаковых элементов управления сверху и снизу, ограничения на неоптимальных нагрузках оказывают серьёзное воздействие лишь на значительном отдалении от "золотой точки". А вот если, как у нас, U1 и M1 отличаются сильно, то ограничения могут серьёзно сузить диапазон выходного сигнала. Например, при тех параметрах, что приведены на схеме, М1 закрывается уже на выходной амплитуде выходного сигнала в 8В, но более того, уже при такой амплитуде искажения приближаются к 10%.
Теперь попробуем включить нагрузку так, как приведено на схеме. Выше я сказал, что в нашем случае первым закрывается M1, т.о., нагрузка в 10кОм - ниже "золотой точки". Теперь имеем сразу два глобальных изменения. Во-первых, ток в нагрузку протекает на через полное сопротивление R1+R6, а через часть. По закону Ома U=IR, уменьшаем R - уменьшается напряжение, которое от тока в нагрузку поступает на затвор-исток. Второе, R6 теперь подключено к истоку через сопротивление R1. Ничего не напоминает? Представим себе, что точка соединения R1 и R6 - это земля. На R6 поступает сигнал (за счёт тока в нагрузку), R6 включен между затвором и землёй. R1 включен между истоком и землёй, т.о., это - аналог катодного сопротивления R3, только не зашунтированный конденсатором. Катодное сопротивление, незашунтированное конденсатором образует отрицательную обратную связь, которая, как мы знаем (на то она и отрицательная) - уменьшает усиление и КНИ. Т.о., "золотая точка" смещается в сторону более низких значений сопротивления. При моделировании, я приблизился к КНИ 1% примерно на амплитуде 40В выходного сигнала и ни лампа, ни MOSFET ещё и не думали закрываться!
Владислав